RelLib Documentation:


Created December 28,2001








USE WORDPAD  PLS...............





VERSION 2.0(June 11,2002) Pls. Read Readme.TXT for a summary of additions......





Description:  RelLib is a VERY FAST Screen 13 Game Programming library made mostly in assembly.  This was made with only one thing in mind: SPEED!!!( at least with the speed intensive routines :) ie Sprites!.    I made the Sprite routines and some other speed intensive routines as fast as I can.  And also made them support clipping ;-).  But one thing I discovered while making this Beta version is, IT COULD ALWAYS GET BETTER!!!!! So if any of you could make my routines faster, I would like to hear from you.  :)  I'm just learning the joy and torture of ASM programming but I made this with all of what I can give you as of the moment.  I also made this to use PP256's powerful features and is compatible with QB's GET and PUT statements. :)





Developer: Richard Eric M. Lope BSN RN aka Relsoft


Email: vic_viperph@yahoo.com


Degree: BS Nursing


SMS: +639192195056


Address: Blk 36, Lot 8, Florvel Homes Subdv. Buray, Oton, Iloilo, Philippines





Disclaimer: I am in no way responsible to any effects of this game development utility to your life.Blah,Blah,Blah,Blah.........


		Use this routines as much as you want.  If you could make something out of this, I would love to hear


		from you. You could also email your games to me.  


		No sound routine is going to be included with this and any future updates of RelLib.  Why? Aside from the fact that I


		Don't have a speaker,  I have found the best to be DS4QB++ by Lithium.


History: Started making my Pset routine November 28,2001......





Note: This library came into being when the artist I was working on with Frantic Journey, Eero Pitkanen(Finland), wanted to have translucency in our sprites.  As we are using COSMOX(probably the best out there), and CosmoX uses blender maps for translucency, and I hate blender maps(they're memory hogs), I decided that the best way is to make a CosmoX compatible translucent routine.   I already know a lot of translucency algorithms so I assumed that it would be easy for me to make it in ASM......... I was wrong.


         So I searched the net for some useful info regarding assembly programming.  Well, the best introductory tutorial I have found is from CGI JOE of Shimmer Ribbonsoft(They also developed a Great Library: RSVGALib).  I also have some pure QB double buffering routines that I have converted into ASM code. ex. are the Sprite Routines. And it really was a pain to convert. Coded this entirely on a 486 and prevented as much AGI's as I can so this would run better on a Pentium.





Requirements:


	*386 or better CPU


	*Qb4.5(but would work with VBDOS and QB7.1)


	*VGA monitor





To USE:	


	*Type QB/L Rel/ah





Important!!!!!!!!!!!!


         For Procedures/Subs/Functions which uses/writes/draws anything  to the VIDEO BUFFER ie PAGES,   The First parameter is always the DESTINATION buffer/segment. I have done this to prevent crashes and for this library to be EASY to learn and use.





	ex:  RelPcopy  VIDEO,Varseg(Vpage(0))


		'copies the contents of VPAGE to the VIDEO screen


	       RelPset    Varseg(Vpage(0)),10,10,15


		'puts a pixel to Vpage at position 10,10 color 15


	       RelSpriteTrans VIDEO,100,100,Varseg(PicArray(0)),Varptr(PicArray(0))


		'puts a Sprite(PicArray) on the Screen at position 100,100 translucently





Procedure and function Summary:





SUBS/FUNCTIONS with (**) need a gradient palette to work well ie Translucency.  Use pp256 to simplify things. :)


For best translucency results, use a 16 color gradient palette. :)


*Note that PP256 segment starts from 1 not zero.


'/======================SCREEN SWITCHING===================================


DECLARE SUB RelInitVGA13 ()


	Description: Initializes the screen to SCREEN 13


	How to Use: RelInitVGA13


	Notes: Like most of the third party libs, you could not use some of QB's GFX statements after you do this.  You could 		alternately use SCREEN 13 if you  like and the libs routine won't complain, but this would make your exe's smaller.


DECLARE SUB RelInitText ()


	Description: Initializes the screen to SCREEN 0, width 80


	How to Use: RelInitText


DECLARE SUB RelWait ()


	Description: waits for vertical retrace


	How to Use: RelWait


	Notes: Waits for vertical retrace to make drawing "cleaner" also used for delay.


DECLARE SUB RelDelay (Msec%)


	Description: Millisecond delay routine for accuracy


	How to Use: RelDelay 100


	Notes: Msec=1000*Sec so to delay for a second, use Reldelay 1000





'/======================SCREEN BUFFER======================================


DECLARE SUB RelPCopy (BYVAL DestSeg%, BYVAL SrcSeg%)


	Description: Copies the contents of SrcSeg% to DestSeg% 


	How to Use: RelPcopy VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen


	Notes: Solid Copy, Very Fast!!!!


DECLARE SUB RelPcopyTrans (BYVAL DestSeg%, BYVAL SrcSeg%)


	Description: Copies the contents of SrcSeg% to DestSeg% skipping color 0


	How to Use: RelPcopyTrans VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen


	Notes: Transparent Copy Used for multiple layered maps and parallax scrolling


**DECLARE SUB RelPcopyTransB (BYVAL DestSeg%, BYVAL SrcSeg%)


	Description: Copies the contents of SrcSeg% to DestSeg% skipping color 0 and Translucently


	How to Use: RelPcopyTransB VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen


	Notes: Transparent Copy with translucency. Used for translucent map layers ie. Waterfalls,Netlike Structures, some other 		kewl FX you can think of. ;-)


**DECLARE SUB RelPcopyBlended (BYVAL DestSeg%, BYVAL SrcSeg%)


	Description: Copies the contents of SrcSeg% to DestSeg%  Translucently


	How to Use: RelPcopyBlended VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen


	Notes: Solid Copy with translucency. Used for translucent map layers ie. Waterfalls,Netlike Structures, some other 		kewl FX you can think of. ;-)


DECLARE SUB RelPCopySF (BYVAL DestSeg%, BYVAL SrcSeg%)


	Description: Copies the contents of SrcSeg% to DestSeg%  only if the color of a particular pixel is 0


	How to Use: RelPcopySF VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen(puts a Pixel only if the color of the DestSeg is ZERO


	Notes: SF stands for See Forth .  Useful for collission detection and some other cool fx. Made this with slower computers in 		mind.  You don't have to make an extra layer for your collide layer.  Using this routine, you could draw your 		FOREGROUND first using Pcopy, check for COLLISION, then Draw your BACKGROUND Layer afterwards using 		RelPcopySF.  That way you  don't need an extra collision layer.


**DECLARE SUB RelPCopyGamma (BYVAL DestSeg%, BYVAL SrcSeg%, BYVAL GammaVal%)


	Description: Copies the contents of SrcSeg% to DestSeg%  transparently. Darkening ot Lightening depending on


			GammaVal (Neg(+)=darken, Pos(+)=lighten)


	How to Use: RelPcopyGamma VIDEO,Varseg(Vpage(0)),5


			*copies the contents of Vpage to the Screen lightening by 5 gamma displacement


	Notes: Same as the Effect you see in some RPG games. Darkening when night and lightening when days.  You could save 		tiles this way(therefore saving memory).  More dynamic than Palette rotation since you could use all the colors that 		you want.


DECLARE SUB RelCompress (BYVAL DestSeg%, BYVAL DestOff%, BYVAL SrcSeg%)


	Description: Copies the contents of SrcSeg% to DestSeg%  compressing into half a screen


	How to Use: RelCompress VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen compressed in half


	Notes: *The Idea came from RSVGALIB by CGI JOE.  Just thought to include it here since I found it to be very COOOOL!


DECLARE SUB RelXCompress (BYVAL DestSeg%, BYVAL DestOff%, BYVAL SrcSeg%, BYVAL SrcOff%, BYVAL PERCENT%)


	Description: Copies the contents of SrcSeg% to DestSeg%  compressing the buffer (extended)


	How to Use: RelXCompress VIDEO,Varseg(Vpage(0))


			*copies the contents of Vpage to the Screen compressed in percentage basis(1 to 100)


	Notes: *The Idea came from RSVGALIB by CGI JOE.  Just thought to include it here since I found it to be very COOOOL! 		Still some polishing needed since its buggy at the moment(Fixed point Math)


DECLARE SUB RelCLS (BYVAL DestSeg%, BYVAL C%)


	Description: Clears DestSEG% to color C%


	How to Use: RelCLS Varseg(Vpage(0)),15


			*Clears the contents of the buffer(Vpage) to color 15


	Notes: uhmmmmmmmmm................nothing. :)


DECLARE SUB RelPageSwap (BYVAL DestSeg%, BYVAL SrcSeg%)


	Description: Swaps/Exchanges the contents of SrcSeg% to DestSeg%


	How to Use: RelPageSwap VIDEO,Varseg(Vpage(0))


			*the contents of the Screen is exchanged with the buffer after the call


	Notes: can be used for Intro's some other cool stuff like in Metal Slug 3


DECLARE SUB RelCopyLineH (BYVAL DestSeg%, BYVAL SrcSeg%, BYVAL Ypos%)


	Description: Copies one horizontal line from SrcSeg to DestSeg in Ypos(Y coordinate)


	How to Use: RelCopyLineH VIDEO,Varseg(Vpage(0)),10


			*Copies a line of GFX from the buffer to the Screen in row 10


	Notes: Lot's of uses(Intros and Endings),Supports Clipping


DECLARE SUB RelCopyLineV (BYVAL DestSeg%, BYVAL SrcSeg%, BYVAL Xpos%)


	Description: Copies one Vertical line from SrcSeg to DestSeg in Xpos(X coordinate)


	How to Use: RelCopyLineX VIDEO,Varseg(Vpage(0)),100


			*Copies a line of GFX from the buffer to the Screen in column 100


	Notes: Lot's of uses(Intros and Endings),Supports Clipping


DECLARE SUB RelCopyBlock (BYVAL DestSeg%, BYVAL SrcSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%)


	Description: Copies a block of GFX from SrcSeg to DestSeg starting at coordinate (X1,Y1) -(X2,Y2)


	How to Use: RelCopyBlock VIDEO,VARSEG(Vpage(0)),10,10,100,100


	Notes: Used to Restore the background for NON-Scrolling games, this way is faster since you only have to restore the block 		at the players position.  Clipping is supported and swaps the values if X1>X2 or Y1>Y2.  So you wont crash your 		computer. :)


**DECLARE SUB RelGammaBlock (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL GammaVal%)


	Description: Copies a block of GFX from SrcSeg to DestSeg starting at coordinate (X1,Y1) -(X2,Y2)


			Darkening or lightening depending on GammaVal(negative vaue=Darken,Positive Value=Lighten


	How to Use: RelGammaBlock VIDEO,VARSEG(Vpage(0)),10,10,100,100,-5


	Notes: Gives the effect that you see in SNES FinalFantasy 3, Caves, Lights, etc.





'/======================DRAWING PRIMITIVES=================================


DECLARE SUB RelPset (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL C%)


	Description: Puts a pixel on DestSeg at location X,Y color C


	How to Use: RelPset VIDEO,10,10,15


	Notes: Same as QB's Pset routine.   Clipping is supported but still very fast(only one shift)!


DECLARE SUB RelPsetF (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL C%)


	Description: Puts a pixel on DestSeg at location X,Y color C


	How to Use: RelPsetF VIDEO,10,10,15


	Notes: Same as QB's Pset routine.   Clipping is NOT supported


		*the fastest PSET routine I had seen is from CGI Joe's Tute. But this one's pretty HOT itself.


**DECLARE SUB RelPsetTrans (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL C%)


	Description: Puts a pixel on DestSeg at location X,Y color C, TRANSLUCENTLY


	How to Use: RelPsetTrans VIDEO,10,10,15


	Notes: Same as QB's Pset routine only puts the pixel translucently.   Clipping is supported 


DECLARE SUB RelBoxF (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL C%)


	Description: Draws a FILLED Box at X1,Y1,X2,Y2


	How to Use: RelBoxF VIDEO,10,10,200,100,25


	Notes: Supports Clipping, and Swaps the values if X1>X2 or Y1>Y2 so no problem with crashes


**DECLARE SUB RelBoxTransF (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL C%)


	Description: Draws a FILLED Box at X1,Y1,X2,Y2 TRANSLUCENTLY!


	How to Use: RelBoxTransF VIDEO,10,10,200,100,50


	Notes: Supports Clipping, and Swaps the values if X1>X2 or Y1>Y2 so no problem with crashes.  Useful for RPG dialog 		boxes and color-scaling a region of screen.


**DECLARE SUB RelBoxTrans (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL C%)


	Description: Draws a Box at X1,Y1,X2,Y2 TRANSLUCENTLY!


	How to Use: RelBoxTrans VIDEO,10,10,200,100,200


	Notes: Supports Clipping, and Swaps the values if X1>X2 or Y1>Y2 so no problem with crashes.  Useful for RPG dialog 		boxes and color-scaling a region of screen.


DECLARE SUB RelBox (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL C%)


	Description: Draws a Box at X1,Y1,X2,Y2 


	How to Use: RelBoxTrans VIDEO,10,10,200,100,10


	Notes: Supports Clipping, and Swaps the values if X1>X2 or Y1!>Y2 so no problem with crashes.  


DECLARE SUB RelLine (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%,BYVAL Y2%, BYVAL C%)


	Description: Draws a Diagonal line line on DestSeg% at X1,Y1,X2,Y2 color C


	How to Use: RelLine  VIDEO,10,100,300,199,15


	Notes: Supports Clipping, and swaps values if X1>X2 or Y1>Y2, so no crashes will occur. Uses Bresenham..;-)


**DECLARE SUB RelLineT (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%,BYVAL Y2%, BYVAL C%)


	Description: Draws a Diagonal line line on DestSeg% at X1,Y1,X2,Y2 color C, TRANSLUCENTLY


	How to Use: RelLineT  VIDEO,10,100,300,199,15


	Notes: Supports Clipping, and swaps values if X1>X2 or Y1>Y2, so no crashes will occur. Uses Bresenham..;-)


DECLARE SUB RelLineH (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL C%)


	Description: Draws a horizontal line on DestSeg% at X1,Y1,X2 color C


	How to Use: RelLineH  VIDEO,10,100,300,15


	Notes: Supports Clipping, and swaps values if X1>X2, so no crashes will occur.


DECLARE SUB RelLineV (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL Y2%, BYVAL C%)


	Description: Draws a Vertical line on DestSeg% at X1,Y1,Y2 color C


	How to Use: RelLineH  VIDEO,10,10,150,15


	Notes: Supports Clipping, and swaps values if Y1>Y2, so no crashes will occur.


**DECLARE SUB RelLineTransV (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL Y2%, BYVAL C%)


	Description: Draws a Vertical line on DestSeg% at X1,Y1,Y2 color C  Translucently!


	How to Use: RelLineH  VIDEO,10,10,150,15


	Notes: Supports Clipping, and swaps values if Y1>Y2, so no crashes will occur.


**DECLARE SUB RelLineTransH (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL C%)


	Description: Draws a horizontal line on DestSeg% at X1,Y1,Y2 color C TransLucently


	How to Use: RelLineH  VIDEO,10,10,150,15


	Notes: Supports Clipping, and swaps values if Y1>Y2, so no crashes will occur.








'/======================SPRITE=============================================


DECLARE SUB RelSprite (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0


			Compatible with QB's Get routine :)


	How to Use: RelSprite VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Try and test this againts the lib your using to see which is faster.  This one is extremely fast! Used for games. :) 


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteSolid (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Solidly


			Compatible with QB's Get routine :)


	How to Use: RelSpriteSolid VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 


	Notes: Try and test this againts the lib your using to see which is faster.  This one is extremely fast! Used for games. :) Also 		try to see the ASM source(Asm guys) for moving Dwords even on ODD width Sprites without using a JUMP. :) I 		don't know if someone already knew the algorithm I used with this(Xloop) but it will be nice to know. 


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteFast (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  SOLIDLY


			Compatible with QB's Get routine :)


	How to Use: RelSpriteFast VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: NO Support for Clipping!!! So beware!!!! Probably useless since there is little difference speedwise with RelSpriteSolid.


**DECLARE SUB RelSpriteTrans (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0 and draws it TRANSLUCENTLY!!!


			Compatible with QB's Get routine :)


	How to Use: RelSpriteTrans VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Cool for See-Thru sprite FX, Ghosts, translucent map Layers,Lasers...ETC. Still very Fast(Used in Space Impact)


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteSF (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%)


	Description: Draws a Sprite on Destseg at coordinate X,Y. Only Draws the Pixel id the color at DESTSEG is ZERO.


			Compatible with QB's Get routine :)


	How to Use: RelSpriteSF VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Used for Memory Deficient computers and RPG's ie. entering houses.  Also for BACKWARD rendering.  See 		RelPcopySF for more details.


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteColor (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%, BYVAL C%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0 and draws the sprite in one single color(C) ie 			Outline of Sprite.


			Compatible with QB's Get routine :)


	How to Use: RelSpriteColor VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset)),31


			*Draws the Sprite at 10,10 using color 31


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Used for collision detection and used to "FLASH" the sprite when hit.


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteColorX (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%, BYVAL C%, BYVAL STARTC%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0 and draws the sprite in one single color(C) ie 			Outline of Sprite.  Will only draw the PIXEL if the pixel in the Sprite is >=StartC%, more dynamic than 			RelSpriteColor.


			Compatible with QB's Get routine :)


	How to Use: RelSpriteColorX VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset)),31,128


			*Draws the Sprite at 10,10 using color 31 only if the SpriteColor >=color 128


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Used for collision detection and used to "FLASH" the sprite when hit. Also to make collision detection more dynamic.  		That way you could divide your colors into 2 sections(0 to 127=no collide and 128-255=collide) then draw them 		appropriately in you collision layer.


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteSolidX (BYVAL DestSeg%, BYVAL SrcSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL NewX%, BYVAL NewY%)


	Description: Draws a block of image from SrcSeg at X1,Y1,X2,Y2 to DestSeg at NewX,NewY


			Same as:


			Get(X1,Y1)-(X2,Y2),Array


			Put(NewX,NewY), Array


			*But doesn't use array to hold the data.


	How to Use: RelSpriteSolidX VIDEO,VARSEG(Vpage(0)),10,10,45,45,100,100


			*Gets a block of image at Vpage on coordinates X1,Y1,X2,Y2 and puts it onScreen at corrdinates 100,100


	Notes: Useful for SCROLLING, restoring the background on scrolling games, anything that moves. :)


		*Swaps the coordinates if X1>X2 or Y1>Y2.  So less crashes.  NO Clipping is supported with NEWX and NEWY so 		use with caution.


**DECLARE SUB RelSpriteGamma (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%, BYVAL GammaVal%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0 and draws the sprite depending on the value of 			GammaVal (Neg(-)=Darken,Pos(+)=Lighten)


			Compatible with QB's Get routine :)


	How to Use: RelSpriteGamma VIDEO,10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset)),6


			*Draws the Sprite at 10,10 lightening its colors by 6 gamma displacement


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Used for Shadows and ghosts. Anything you want! :)


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteRotate (BYVAL DESTSEG%, BYVAL X%, BYVAL Y%, BYVAL ANGLE%, BYVAL SPRSEG%, BYVAL SPROFF%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0 and Rotates it according to the ANGLE


			Compatible with QB's Get routine :)


	How to Use: RelSpriteRotate VIDEO,10,10,100,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset)),6


			*Draws the Sprite at 10,10 rotating it 100 degrees


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Used to make a sprite Rotate to simplify things.  Angle must be in the range of 0-359


		*SUPPORTS CLIPPING!!!!!


**DECLARE SUB RelSpriteRotateTrans (BYVAL DESTSEG%, BYVAL X%, BYVAL Y%, BYVAL ANGLE%, BYVAL SPRSEG%, BYVAL SPROFF%)


	Description: Draws a Sprite on Destseg at coordinate X,Y.  Skips color 0 and Rotates it according to the ANGLE 


			Tranlucently!!! Compatible with QB's Get routine :)


	How to Use: RelSpriteRotateTrans VIDEO,10,10,100,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset)),6


			*Draws the Sprite at 10,10 rotating it 100 degrees,bending the BG with the SPR


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Used to make a sprite Rotate to simplify things.  Angle must be in the range of 0-359


		*SUPPORTS CLIPPING!!!!!





DECLARE SUB RelGet (BYVAL DestSeg%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%, BYVAL SPRSEG%, BYVAL SPROFF%)


	Description: Gets the Image at DestSeg% at coords X1,Y1,X2,Y2 and Stores the data at SprOff.


			*Compatible with QB's PUT routine


			*Works like QB's GET routine


			*Use in conjuction with RelSize


	How to Use: 	RelSize(10,10,20,20)


			Dim Array(RelSize,1 to 2)     'two elements for ease


			'Draw crap at VPAGE


			RelGet VARSEG(Vpage(0)),10,10,20,20,Varseg(Array(0,1)),Varptr(Array(0,1))   'First Image


			RelGet VARSEG(Vpage(0)),10,10,20,20,Varseg(Array(0,1)),Varptr(Array(0,2))   'Second Image


			or....


			RelSize(10,10,20,20)


			Dim Array(RelSize*2)     'two images


			'Draw crap at VPAGE


			RelGet VARSEG(Vpage(0)),10,10,20,20,Varseg(Array(0)),Varptr(Array(0))   'First Image


			RelGet VARSEG(Vpage(0)),10,10,20,20,Varseg(Array(0)),Varptr(Array(RelSize))   'Second Image


			*use what suits you or for a better index... use PP256 since it's indexed automatically :-)


	Notes: Useful for games............Supports Clipping





'/======================COLLISION DETECTION=================================


DECLARE FUNCTION RelCollide% (BYVAL DestSeg%, BYVAL X%, BYVAL Y%, BYVAL SPRITESEGMENT%, BYVAL SPRITEOFFSET%)


	Description: Unlike most Collision detection, This returns the COLOR of the pixel the sprite collided with instead of -1. 


			*Returns color of pixel collided with, zero(FALSE) if otherwise, The check is done at DestSeg.


	How to Use: RelCollide VARSEG(Vpage(0)),10,10,VARSEG(SprArray(0)),VARPTR(SprArray(Offset))


			*Returns the color of the pixel the sprite Collided with(Pixel*Pixel) 0 if not


			*Offset is the sprite's offset/frame


			*Used in conjuction with RelCollideSprB to achieve pixel*pixel sprite collision detection


	Notes: Returning the Color instead of -1(TRUE) is more dynamic and flexible in the sense that you don't have to use another 		layer to detect collision.  Example: 


			C=Relcollide Varseg...............


			if C>127 then Collision=TRUE else Collision=FALSE			


		*Supports Clipping


DECLARE FUNCTION RelCollideSprB% (BYVAL SPR1X%, BYVAL SPR1Y%, BYVAL SPR1SEGMENT%, BYVAL SPR1OFFSET%, BYVAL SPR2X%, BYVAL SPR2Y%, BYVAL SPR2SEGMENT%, BYVAL SPR2OFFSET%)


	Description: Returns -1(TRUE) if Spr1 collided with SPR2 using a bounding box check


	How to Use: RelCollideSprB Spr1X,Spr1Y,VARSEG(Spr1(0)),VARPTR(Spr1(Offset)),Spr2X,Spr2Y,VARSEG(Spr2(0)),VARPTR(Spr2(Offset))


			*Offset is the sprite's offset/frame


			*Used in conjuction with RelCollide to achieve pixel*pixel sprite collision detection


			*This does not actually draw the sprites. It checks collision arithmitically.


	Notes: Very FAST.  See the source..... :) and the example Files for more details.... :-)


DECLARE FUNCTION RelCollideSpr% (BYVAL SPR1X%, BYVAL SPR1Y%, BYVAL SPR1SEGMENT%, BYVAL SPR1OFFSET%, BYVAL SPR2X%, BYVAL SPR2Y%, BYVAL SPR2SEGMENT%, BYVAL SPR2OFFSET%)


	Description: Returns the color of in the SPR2  if Spr1 collided with SPR2 using a PIXEL PERFECT collision method


	How to Use: RelCollideSpr Spr1X,Spr1Y,VARSEG(Spr1(0)),VARPTR(Spr1(Offset)),Spr2X,Spr2Y,VARSEG(Spr2(0)),VARPTR(Spr2(Offset))


			*Offset is the sprite's offset/frame


			*Pixel perfect so you don't have to use a collision layer


			*This does not actually draw the sprites. It checks collision arithmitically.


			*This combines RelCollide and RelCollideSprB in one but does it faster!!!!! 


	Notes: Very FAST.  See the source..... :) and the example Files for more details.... :-)





'/======================KEYBOARD============================================


*I found this routines at CGI Joe's tutorial.  I have made my own routines using Petter Holmbergs tut but mine's a little buggy so I used the routines I found at CGI's tut.  This are not my routines, This is CGI's.


DECLARE SUB RelKeyBoardON ()


	Description: Turns the Keyboard handler on.


	How to Use: RelKeyBoardON


	Notes: You will not be able to use QB's intrinsic keyboard routines(INKEY$,INPUT$,etc) after you issue this command.


DECLARE SUB RelKeyBoardOFF ()


	Description: Turns the Keyboard handler off.


	How to Use: RelKeyBoardOFF


	Notes: Use this to turn the KeyBoard handler off. Always issue this before ending your program or you will not regain control 		of the keyboard.


DECLARE FUNCTION RelKey% (BYVAL Scancode%)


	Description: Returns -1(TRUE) if a particular key is pressed.


	How to Use: if RelKey(KEYENTER) then    'Check to see if user pressed Enter


			DOSOMETHING


		      else


			DONOTHING


		      end if


	Notes: *Scancode is the Code which can be found at QB's online help.  See RelLib.BI for KEY constants


'/======================FONT================================================


DECLARE SUB RelPrint (DestSeg%, X%, Y%, Font$, Mincolor%, Italic%)


	Description: Prints an 8*8 font using the ROM address FFA6h,italic ot otherwise,Starting from color mincolor to Mincolor+8


			*Font$=String to Print


			*MinColor=Starting Color to plot


			*if TRUE,prints in italic,Else normal


	How to Use: RelPrint VIDEO,10,10,"RelSOFT",23,TRUE


			*Prints "RelSOFT" on the Screen at 10,10,Starting from color 23 to color 30, in ITALIC


	Notes: Supports Clipping!!!


DECLARE SUB RelPrintS (DestSeg%, X%, Y%, Font$, Mincolor%, Xscale%, Yscale%, Italic%)


	Description: Prints a SCALED font using the ROM address FFA6h,italic ot otherwise,Starting from color mincolor to 			Mincolor+8


			*Font$=String to Print


			*MinColor=Starting Color to plot


			*If TRUE,prints in italic,Else normal


			*Xscale=Horizontal Scale(minimun is 1)


			*Yscale=Vertical Scale(minimum is 1)


	How to Use: RelPrintS VIDEO,10,10,"RelSOFT",23,2,3,FALSE


			*Prints "RelSOFT" on the Screen at 10,10,Starting from color 23 to color 30, in ITALIC,with 2x the Xsize and 			3 times the Ysize.


	Notes: Supports Clipping!!!


**DECLARE SUB RelPrintTransS (DestSeg%, X%, Y%, Font$, Mincolor%, Xscale%, Yscale%, Italic%)


	Description: Prints a SCALED font using the ROM address FFA6h,italic ot otherwise,Starting from color mincolor to 			Mincolor+8, TRANSLUCENTLY!!!!!


			*Font$=String to Print


			*MinColor=Starting Color to plot


			*If TRUE,prints in italic,Else normal


			*Xscale=Horizontal Scale(minimun is 1)


			*Yscale=Vertical Scale(minimum is 1)


	How to Use: RelPrintTransS VIDEO,10,10,"RelSOFT",23,2,3,FALSE


			*Prints "RelSOFT" on the Screen at 10,10,Starting from color 23 to color 30, in ITALIC,with 2x the Xsize and 			3 times the Ysize. TRANSLUCENTLY!!!


	Notes: Supports Clipping!!!





DECLARE SUB RelFont256 (DestSeg%, X%, Y%, Text$, Centered%, FontArray%(), FontArrayIndex%())


	Description: Prints font using any Charset made with PP256!!!! With Variable Spacing!!!


			*Text$=String to Print


			*Centered= Auto Centers the string if TRUE


			*FontArray()= FontSet made with PP256


			*FontArrayIndex()=Index made with MakeImageIndex


	How to Use: RelFont256 VIDEO,10,10,"RelSOFT",FALSE,Font(),FontIndex()


			*Prints "RelSOFT" on the Screen at 10,10,with autocentering off


	Notes: Supports Clipping!!! Must Issue InitImageData before you use this(see example files for more details)


**DECLARE SUB RelFontTrans256 (DestSeg%, X%, Y%, Text$, Centered%, FontArray%(), FontArrayIndex%())


	Same as RelFont256 but prints the fonts TRANSLUCENTLY!!!!


DECLARE SUB RelFontFixed256 (DestSeg%, X%, Y%, Text$, Centered%, FontArray%(), FontArrayIndex%())


	Description: Prints font using any Charset made with PP256!!!! With Fixed Spacing.


			*Text$=String to Print


			*Centered= Auto Centers the string if TRUE


			*FontArray()= FontSet made with PP256


			*FontArrayIndex()=Index made with MakeImageIndex


	How to Use: RelFontFixed256 VIDEO,10,10,"RelSOFT",FALSE,Font(),FontIndex()


			*Prints "RelSOFT" on the Screen at 10,10,with autocentering off


	Notes: Supports Clipping!!! Must Issue InitImageData before you use this(see example files for more details)


**DECLARE SUB RelFontFixedT256 (DestSeg%, X%, Y%, Text$, Centered%, FontArray%(), FontArrayIndex%())


	Same as RelFontFixed256 but prints the fonts TRANSLUCENTLY!!!!


DECLARE SUB RelScore256 (DestSeg%, X%, Y%, Score&, Centered%, FontArray%(), FontArrayIndex%())


	Description: Prints the Score& using any Charset made with PP256!!!! With Fixed Spacing.


			*Score&=LongINT value to print


			*Centered= Auto Centers the string if TRUE


			*FontArray()= FontSet made with PP256


			*FontArrayIndex()=Index made with MakeImageIndex


	How to Use: RelScore256 VIDEO,10,10,1000000,FALSE,Font(),FontIndex()


			*Prints "1,000,000" on the Screen at 10,10,with autocentering off


			*Note that a Comma(,) is inserted every 3 chars from the right.


	Notes: Supports Clipping!!! Must Issue InitImageData before you use this(see example files for more details)


**DECLARE SUB RelScoreTrans256 (DestSeg%, X%, Y%, Score&, Centered%, FontArray%(), FontArrayIndex%())


	Same as RelScore256 but prints the fonts TRANSLUCENTLY!!!!








'/======================MEMORY==============================================


DECLARE SUB RelMemCopy (BYVAL DestSeg%, BYVAL DestOff%, BYVAL SrcSeg%, BYVAL SrcOff%, BYVAL NumBytes%)


	Description: Copies numbytes from SRC to DEST


	How to Use: RelMemCopy VIDEO,200,VARSEG(VPAGE(0)),VARPTR(Vpage(500)),12000


			*Copies the contents of Vpage at offset 500, to the Screen at offset 200,copying 12000 bytes


	Notes: Numbytes should not Exceed 32767.  I don't know how to fix this as of the moment but I think it has something to do 		with QB defaulting to SIGNED integers.  So if any of you knows how to fix this, pls email me, and you will get credit. 		:) .  Could be used as a replacement for PCOPY or Reusing of Array's of the same size. Probably useless.  Got the 		Idea from PASCAL.


DECLARE SUB RelAddHi (BYVAL SEGINTVAL%, BYVAL OFFINTVAL%, BYVAL BYTEVAL%)


	Description: Puts a value(0 to 255) to the UPPER byte of Intval, emulates bytes in QB to save memory


	How to Use:RelAddHi Varseg(A%),Varptr(A%),230


			*Writes the value 230 to the upper byte of A%


	Notes: Use VARSEG and VARPTR combination to get the pointer of the Integer Value. Values for Byte val are UNSIGNED 		meaning  they range from 0 to 255 and you can't put negative values.  Useful for Maps/Tilesets/TileIndexes as you 		wont need more than 255 to make some good tilesets.See ByteSamp.Bas for more details.


DECLARE SUB RelAddLow (BYVAL SEGINTVAL%, BYVAL OFFINTVAL%, BYVAL BYTEVAL%)


	Description: Puts a value(0 to 255) to the LOWER byte of Intval, emulates bytes in QB to save memory


	How to Use:RelAddLow Varseg(A%),Varptr(A%),230


			*Writes the value 230 to the lower byte of A%


	Notes: Use VARSEG and VARPTR combination to get the pointer of the Integer Value. Values for Byte val are UNSIGNED 		meaning  they range from 0 to 255 and you can't put negative values.  Useful for Maps/Tilesets/TileIndexes as you 		wont need more than 255 to make some good tilesets. See ByteSamp.Bas for more details.


DECLARE FUNCTION RelGetHi (BYVAL Intval%)


	Description: Returns value(0 to 255) read from the UPPER byte of Intval


	How to Use:	Dim A as Integer


			RelAddHi Varseg(A),Varptr(A),156


			HiByte=RelGetHi(A)


			*Returns 156(HighByte)


	Notes: Used in conjuction with RelAddHi/RelAddLow to emulate BYTES in QB. Values returned are UNSIGNED 		meaning  they range from 0 to 255 .  Useful for Maps/Tilesets/TileIndexes as you wont need more than 255 to make 		some good tilesets. Saves a lot of memory.


DECLARE FUNCTION RelGetLow (BYVAL Intval%)


	Description: Returns value(0 to 255) read from the LOWER byte of Intval


	How to Use:	Dim A as Integer


			RelAddLow Varseg(A),Varptr(A),124


			LowByte=RelGetLow(A)


			*Returns 124(LowByte)


	Notes: Used in conjuction with RelAddHi/RelAddLow to emulate BYTES in QB. Values returned are UNSIGNED 		meaning  they range from 0 to 255 .  Useful for Maps/Tilesets/TileIndexes as you wont need more than 255 to make 		some good tilesets. Saves a lot of memory.


'/======================MOUSE===============================================


DECLARE SUB RelMouseShow ()


	Description: Shows the mouse


	How to Use: RelMouseShow


	Notes: ;)


DECLARE SUB RelMouseHide ()


	Description: Hides the mouse


	How to Use: RelMouseHide


	Notes: ;)


DECLARE SUB RelMouseReset ()


	Description: Resets the Mouse Coordinates to center of screen and disables Range Limits


	How to Use: RelMouseReset


	Notes: ;)


DECLARE SUB RelMouseLimitXY (BYVAL MinX%, BYVAL MinY%, BYVAL MaxX%, BYVAL MaxY%)


	Description: Limits the mouse range by MinX,MinY,MaxX,maxY


	How to Use: RelMouseLimitXY 10,10,100,100


	Notes: Shows the mouse if nit shown limiting it to the box defined by the above dimensions


DECLARE SUB RelMouseSetXY (BYVAL X%, BYVAL Y%)


	Description: Sets the mouse location


	How to Use: RelMouseSetXY 10,10


	Notes: Show the mouse if hidden and puts it at the above coordinates.


DECLARE FUNCTION RelMouseX% ()


	Description: Returns the X mouse coordinate


	How to Use: C=RelMouseX


	Notes: ;)


DECLARE FUNCTION RelMouseY% ()


	Description: Returns the Y mouse coordinate


	How to Use: C=RelMouseY


	Notes: ;)


DECLARE FUNCTION RelMouseClick% ()


	Description: Returns:


			 1 if Leftbutton is clicked


			 2 if Rightbutton is clicked


			 3 if both are clicked at the same time.


	How to Use: C=RelMouseClick


	Notes: ;)


DECLARE FUNCTION RelMouseDetect% ()


	Description: returns 1  if there is a mouse 0 if otherwise


	How to Use: C=RelMousedetect


	Notes: ;)


DECLARE FUNCTION RelMouseInside (BYVAL MinX%, BYVAL MinY%, BYVAL MaxX%, BYVAL MaxY%)


	Description: returns 1 if the mouse is inside the box defined by MinX, MinY,MaxX,MaxY


	How to Use: C=RelMouseInside 10,10,100,100


	Notes: Used in conjuction with Relmouseclick to see if you clicked on a given area(button)





'/======================IMAGES==============================================


DECLARE SUB RelLoadBMP (DestSeg%, File$, SwitchPal%, Pall$)


	Description: Loads a 320*200*256 color bitmap to DestSeg


			*Switchpal% if TRUE will switch the current palette to the palette of the BMP file


			*Pall$=1024 string pal of the BMP file


	How to Use: RelLoadBMP VARSEG(VPAGE(0)), "Crap.BMP", TRUE, Pal$


	Notes: Loads the CRAP.BMP file to VPAGE switching the palette to the BMP file pallete and storing Pal to PAL$


		Slow as of the moment.





'/======================PALETTE=============================================


DECLARE SUB RelReadRGB (ColorVal%, R%, G%, B%)


	Description:Reads the RGB values of colorval			


	How to Use: RelReadRGB 100,R,G,B


			*Reads the RGB values of color 100 putting them in the variables R,G & B


	Notes: look at the sample files at the Examples folder


DECLARE SUB RelWriteRGB (ColorNum%, R%, G%, B%)


	Description:Writes the RGB values to colornum			


	How to Use: RelWriteRGB 100,63,0,0


			*Writes the RGB values 63,0,0 to color 100 making it red


	Notes: look at the sample files at the Examples folder


DECLARE SUB RelReadPal (PalString$)


	Description: Reads the current palette storing it in the 768 byte string Palstring$			


	How to Use: Dim RGBpal as String *768


			RelReadPal RGBpal


	Notes: After using this sub, you can use all the palette manipulation of RelLib


DECLARE SUB RelFade (R%, G%, B%, Counts%)


	Description: Fades the current palette to the specified RGB values


			*Counts is a nifty parameter which allows you to specify how many times it takes to completely fade the pal


	How to Use: RelFade 0,0,0,200


			*Fades the current pal to black in 200 steps


			RelFade 0,0,0,0


			*Instantaneous pal switch to black


	Notes: Uses vectors instead of integers to fade the palette giving you more control and also makes the fadeout standardized. 		Meaning, all the fadeout will arrive at the same time as all the other attributes no matter how near or far the RGB 		difference is.  Uses the morphing algorithm. All colors are affected.


DECLARE SUB RelFadeStep (StartCol%, EndCol%, R%, G%, B%)


	Description: Fades the colors form Startcol to Endcol to the specified RGB values in steps


	How to Use: RelFadeStep 100,150,0,0,0


			*Decrements the RGB values of color 100 to 150 by one


	Notes: to completely fade call this SUB 64 times. Useful for night and day effects.  See the RPG demo at the Examples 		folder.


DECLARE SUB RelFadeToPal (PalString$, Counts%)


	Description: Fades the current palette to the palette held by Palstring$


			*Counts is a nifty parameter which allows you to specify how many times it takes to completely fade the pal


			*PalString$ is a 768 byte string that holds pal values


	How to Use: Dim RGBpal as String*768


			RelFadeToPal RGBpal,200


			*Fades the current pal to RGBpal in 200 steps


			RelFadeToPal RGBpal,0


			*Instantaneous pal switch to RGBpal


	Notes: Uses vectors instead of integers to fade the palette giving you more control and also makes the fadeout standardized. 		Meaning, all the fadeout will arrive at the same time as all the other attributes no matter how near or far the RGB 		difference is.  Uses the morphing algorithm. Pls see the example file.


DECLARE SUB RelFadeToPalStep (StartCol%, EndCol%, PalString$)


	Description: Fades the current palette to the palette held by PalString$ in steps


	How to Use: Dim RGBpal as String*768


			RelFadeToPalStep 100,150,RGBpal


	Notes: to completely fade call this SUB 64 times. Useful for night and day effects.  See the RPG demo at the Examples 		folder.


DECLARE SUB RelFadeToPalX (StartCol%, EndCol%, PalString$, Counts%)


	Description: Fades the current palette to the palette held by Palstring$ from StartCol to EndCol. ie, Selective Fade


			*Counts is a nifty parameter which allows you to specify how many times it takes to completely fade the pal


			*PalString$ is a 768 byte string that holds pal values


	How to Use: Dim RGBpal as String*768


			RelFadeToPalX 100,150,RGBpal,200


			*Fades Color 100 to 150 to RGBpal in 200 steps


			RelFadeToPalX 100,150, RGBpal,0


			*Instantaneous pal switch to RGBpal


	Notes: Uses vectors instead of integers to fade the palette giving you more control and also makes the fadeout standardized. 		Meaning, all the fadeout will arrive at the same time as all the other attributes no matter how near or far the RGB 		difference is.  Uses the morphing algorithm. Pls see the example file.


DECLARE SUB RelFadeX (StartCol%, EndCol%, R%, G%, B%, Counts%)


	Description: Fades the current palette to the specified RGB values from StartCol to EndCol. ie, Selective Fade


			*Counts is a nifty parameter which allows you to specify how many times it takes to completely fade the pal


	How to Use: 	RelFadeX 100,150,63,63,63,200


			*Fades Color 100 to 150 to bright white in 200 steps


			RelFadeX 100,150,63,63,63 ,0


			*Instantaneous pal switch to bright white


	Notes: Uses vectors instead of integers to fade the palette giving you more control and also makes the fadeout standardized. 		Meaning, all the fadeout will arrive at the same time as all the other attributes no matter how near or far the RGB 		difference is.  Uses the morphing algorithm. Pls see the example file.


DECLARE SUB RelLoadPal (File$, PalString$, Switch%)


	Description: Loads an external pal file(File$) storing the palette in the 768 byte paltring$


			*Switch lets you specify if you want to switch to the palette help by palstring$. if TRUE then switch else...


	How to Use: Dim RGBpal as String*768


			1. RelLoadPal "RelPal.Pal",RGBpal,TRUE


				*Loads the pal and switches the current palette to palstring$


			2. RelLoadPal "RelPal.Pal",RGBpal,FALSE


				*Loads the pal and but does not switch colors


	Notes: See the example file ;-).  File$ should be a 768 byte file(made using RelSavePal)


DECLARE SUB RelLoadPalPP256 (File$)


	Description: Loads an external PP256 pal file(File$) 


			*Switches the colors just included it here to be compatible with PP256


	How to Use: Dim RGBpal as String*768


			RelLoadPalPP256 "PPpal.Pal"


			RelReadPal RGBpal


			RelSavePal "RelPal.Pal"


			*Loads a PP256(1024 byte pal file), switching the current palette, Reads the current palette saving it to 			RGBpal, then Saves the current palette to a 768 byte pal file named RelPal.Pal


	Notes: Very useful for converting a pp256(1024 bytes) format file to the standard 768 byte pal so as not to waste memory(256 		bytes is still 256 bytes, don't ya think?).  Kackurot gets credit for this one.  In case you're wondering PP256 Pal 		loader has a BUG that prevents it from running when compiled. :-)


DECLARE SUB RelNegativePal ()


	Description: Subracts from 63 each RGB val of the current pal flipping the values producing a "negative" effect


	How to Use: RelNegativePal


	Notes: ya hafta see this!!!! See the example files.... ;-)


DECLARE SUB RelRotatePalB (StartCol%, EndCol%)


	Description: Rotates the palettes from StartCol to EndCol giving a motion effect backwards.


	How to Use:      Do


				RelRotatePalB 100,150


			Loop until inkey$<>""		


	Notes: See the example files.... ;-) Plasma anyone? :-)


DECLARE SUB RelRotatePalF (StartCol%, EndCol%)


	Description: Rotates the palettes from StartCol to EndCol giving a motion effect Forward.


	How to Use:      Do


				RelRotatePalF 100,150


			Loop until inkey$<>""		


	Notes: See the example files.... ;-) Plasma anyone? :-)


DECLARE SUB RelSavePal (File$)


	Description: Saves the current pal to File$(a 768 byte file)


	How to Use:  RelSavePal "RelPal.Pal"   


	Notes: See the example files.... ;-) 


DECLARE SUB RelSwitchToPal (PalString$)


	Description: Instantaneous switch to palstring$(768 byte)


	How to Use:  RelSwitchPal RGBpal


	Notes: See the example files.... ;-) 








/======================OnSprite SUBS/FUNCTIONS+==============================


Note:  Special procedures Allegro Style!!! Joakim's subs :*)


	>The coordinate passed are 0 relative which means that you treat the QB get/put array as a buffer.


	>You can have as many VARIABLE-SIZED buffer using this routines depending on the memory as this


		are very memory efficient and used well, could give you some cool FX. Pls. refer to the example file


		for more details(SpriteON.Bas).


DECLARE SUB RelPsetOnSprite (BYVAL DESTSprSEG%, BYVAL DESTSprOFF%, BYVAL X%, BYVAL Y%, BYVAL C%)


	Description: Puts a pixel on a QB GET/PUT array(DestsprSeg/DestSprOff) at location X,Y color C


	How to Use: RelPsetOnSprite Varseg(Array(0)),Varptr(Array(0)),10,10,15


	Notes: Same as QB's Pset routine.   Clipping is supported! 	


**DECLARE SUB RelPsetOnSpriteT (BYVAL DESTSprSEG%, BYVAL DESTSprOFF%, BYVAL X%, BYVAL Y%, BYVAL C%)


	Description: Puts a pixel on a QB GET/PUT array(DestsprSeg/DestSprOff) at location X,Y color C,Translucently!!


	How to Use: RelPsetOnSpriteT Varseg(Array(0)),Varptr(Array(0)),10,10,15


	Notes: Same as QB's Pset routine.   Clipping is supported! 	


DECLARE SUB RelSpriteOnSprite (BYVAL DESTSprSEG%, BYVAL DESTSprOFF%, BYVAL X%, BYVAL Y%, BYVAL SPRSEG%, BYVAL SPROFF%)


	Description: Draws a Sprite on a GET/PUT array at coordinate X,Y.  Skips color 0


			Compatible with QB's Get routine :)


	How to Use: RelSpriteOnSprite VARSEG(Array(0)),VARPTR(ARRAY(0)),10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 skipping color 0


	Notes: Also almost as fast as RelSprite so not a lot has been lost.  Useful for changing the appearance of the sprite or


		using buffers/pages of different sizes. See example file(SpriteO.Bas). Note: You can do double buffering using


		this single routine alone. ie. Draw your sprite using this and Blit your buffer using QB's PUT.


		*SUPPORTS CLIPPING!!!!!


DECLARE SUB RelSpriteOnSpriteS (BYVAL DESTSprSEG%, BYVAL DESTSprOFF%, BYVAL X%, BYVAL Y%, BYVAL SPRSEG%, BYVAL SPROFF%)


	Description: Draws a Sprite on a GET/PUT array at coordinate X,Y.  Solidly.


			Compatible with QB's Get routine :)


	How to Use: RelSpriteOnSpriteS VARSEG(Array(0)),VARPTR(ARRAY(0)),10,10,VARSEG(SpriteArray(0)),VARPTR(SpriteArray(Offset))  


			*Offset is the Frame of the Sprite for animation. Puts a Sprite at coordinate 10,10 solidly


	Notes: Also almost as fast as RelSpriteSolid so not a lot has been lost.  Useful for changing the appearance of the sprite or


		using buffers/pages of different sizes. See example file(SpriteO.Bas). Note: You can do double buffering using


		this single routine alone. ie. Draw your sprite using this and Blit your buffer using QB's PUT.


		*SUPPORTS CLIPPING!!!!!


DECLARE FUNCTION RelPointOnSprite% (BYVAL DESTSprSEG%, BYVAL DESTSprOFF%, BYVAL X%, BYVAL Y%)


	Description: Returns the color of a pixel on  a QB GET/PUT array(DestsprSeg/DestSprOff) at location X,Y. 


	How to Use: C=RelPpointOnSprite Varseg(Array(0)),Varptr(Array(0)),10,10


	Notes: Same as QB's Point routine.   Clipping is supported! 	





'/======================FUNCTIONS===========================================


DECLARE FUNCTION RelSize% (BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%)


	Description: Determines the size needed to dimension an array using this formula:


			SIZE=(((X2-X1)*(Y2-Y1))\2)+2(Thanks to  Andrew Ayers)


			*used in conjuction with RelGET


	How to Use: SizeNeeded=RelSize(0,0,15,15)


			Calculates the size needed to dimension an array  16*16 in size


	Notes: Makes dimensioning easier.  Useless if your using PP256.


DECLARE FUNCTION RelPoint% (BYVAL DestSeg%, BYVAL X%, BYVAL Y%)


	Description: Works like QB's POINT function. Returns the Pixel Color of destseg at X,Y.


	How to Use: RelPoint VIDEO,10,10


			*Returns the color of the screen at 10,10


	Notes: Used for many puposes........ hehehehehe


DECLARE FUNCTION RelInside% (BYVAL X%, BYVAL Y%, BYVAL X1%, BYVAL Y1%, BYVAL X2%, BYVAL Y2%)


	Description: Returns -1 if Coordinate X,Y is inside the Bounding Box defined by X1,Y1,X2,Y2


	How to Use: C=RelInside X, Y, 10,10,100,100


			*Returns the -1(TRUE) if X,Y is inside 0(FALSE) if not.


	Notes: Used for Block Type Range checking and collision detection


DECLARE FUNCTION RelInsideC% (BYVAL X%, BYVAL Y%, BYVAL XC%, BYVAL YC%, BYVAL Radius%)


	Description: Returns -1 if Coordinate X,Y is inside the Circle defined by XC=centerX,Yc=CenterY,radius=Distance


	How to Use: C=RelInsideC X, Y, 100,100,50


			*Returns the -1(TRUE) if X,Y is inside 0(FALSE) if not.


	Notes: Used for Radar Type range checking(Idea came from a post at a QB board), Very useful for RPGS and could also be 		used for collision detection. Very FAST!!! No Square Root is used nor any use of FPU.


/==========================End of Routines==========================================================


**On the horizon


	Diagonal line Routine(done!!!!! After more than 10 crashes.... :)) Now, very fast!!!!!


	Sprite Rotation and Scaling(optimizing.......) Note: Rotation=DONE!!!!!


		Made it already in QB but couldn't translate it well to ASM


	Circle and Ellipse routines


		If I could get it to work....Damn this fixed point math!!!!


	Triangle routines


		Yeah right.


	Bilinear Filtering and WU pixels


		(Shudders)


	Real Alpha Blended Translucency


		Doesn't need a gradient palette to work. Slower though.


	EMS(Scrapped cuz WINBLOWS XP doesn't like EMS.  Blame MS not me.)


		Will use XMS instead so no problem. 





**I included the source so that other ASM newbies like me may learn to make their own super fast routines.  I commented the source as much as I can so don't call me stingy.  If somebody learns from my routines, I would love to hear from you. And If I can learn ASM, so can YOU!!!!


** For any routines you want added to this library, pls. email me about it and I'll see what I can do.





CREDITS:





	GOD/JESUS CHRIST


		For making me what I am today!!!!


	Anya Therese Lope(my daughter)


		For the constant determination to shutdown the computer while I'm making this.


	Rosmelly Lope


		For the constant nagging to sleep early.


	Lily Lope and Peter Lope


		My parents


	Marie Cristina and Cristina Marie 


		My sisters(the above is not a TYPO), my dad used either SWAP or XCHG! j/k





		


	CGI JOE (Shimmer.Zext.Net) aka Alan O'Hagan


		For the great tutorial and the help at the boards.  Without you, I could never have done this!!!!  You da man! Mate....


	Aura Flow Team:


	Eero Pitkanen


		The Artist formerly known as EEBRO. For his idea of making some tiles in the game we're developing translucent.


	Adigun Polack


		For giving Arqanoid a 10/10 and donating some of the coolest SFX/GFX to be used with Space Impakto/Frantic 		Journey. Now a member of the AuraFlow team


	Bobby Leigh aka Beta_SS


		For accepting the job I offered to help me code Frantic Journey(he's doing the sounds and sticks) LOL


		(Eebro,Adigun,Beta_SS and I are working on the project as of the moment)


	Achmad Aulia aka L_O_J


		The newest member of the team.....





	WILDCARD(Qbasic.QB45.com),(Qbasicnews.com)


		For keeping the Qmunity alive and for writing an article for Space Impakto, which paved the way for EEBRO and I to 		co-develop the game.


	Luis Espinoza aka. Laffin


		For making me realize that ideal mode is better and easier than MASM mode.  I should have been going to the 		chatroom ealier buddy.  King of Hacks! And for donating 2 routines(Long2Int and Int2long) to "FOOL" QB.


	Petter Holmberg


		Very useful ASM tut.  Now if I could get Absolute Assembly to work.....


	Gianncarlo(GBgames.com)


		Best Links site and giving Arqanoid an 82%


	Jason Earl


		Without his review of Arqanoid, I would never have found Adigun.


	Bobby3999(CosmoSoft.Zext.Net) aka Francisco Soto


		For making the best LIB (CosmoX), I'll still be using your lib for Space Impact so don't worry..


	Toshihiro Horie


		Taught me some cool things. And tips on how to play with data structures. A Genius!!!


	Glenn Stumpff(did I spell it right?)  "The Glenn"	


		Hands down, your the SMARTEST!  Thanks for the tips. Also a Genius!!!


	Byron Adams aka Nory-B(Masterminds.co.nz)


		For telling me to convert the Pure QB RelLib to ASM


	Andrew L. Ayers


		For teaching me how do do some kick ass things with QB's Sprites.


	Chris Chadwick


		For making PP256.


	Mr. Moose,Jake and ChaotiC(Masterminds.co.nz) 


		Couldn't wait to see the finished NEXIUM32 and SnowBrawl


	Golrein


		Wakakakakakaa,  a monkey is funny...... for the occasional tips, and the SWEETEST Emails!!!!!


	Jason Gould


		Studied his codes to make my routines fast.


	Angelo Mottola


		His LIB is the first one I've used.


	Dark Dread


		Used his Tileset for some demos and for being an inspiration to make good games.


	Adam Hyde


		Also for his excellent ASM tutorial.


	Andre Brown(Kakurot)


		For making RelLib as a platform for his Zelda style game. (Quest)


	Lachie Dazdarian


		For pointing out the bug in RelDelay which screws up on faster computers, and for releasing the first ever Rellib 		product.  Finish that Solar Wind-like game my friend.....


	Joakim Anfelt_Ronne(Joakim_AR)


		For being honest with regards to UGL(plug_plug) :)


		*Version 2.0 is dedicated to this guy. :*)


	V1ctor and Blitz


		Plugged UGL here. Thank me!!! hehehehe.  Beta testers anyone?


	Lawrence Bray Taleon


		Gaming tips and would be a great military tactician someday(Red Alert II)


	Jan Aaron Rojas


		Gaming tips and Gran Turismo II wizard(buy Metal Gear Solid II)


	Nathan Asshanti


		For being the first to test this LIB.  Hentai anyone? Try Jill to see one of the best games ever made in QB!!!


	R@dioman


		For his kind words and interest in rellib.  Coudn't wait for your RPG dude!


	


		


Updates!!!!





January 13,2002


	Made my font routines


January 15,2002


	Made my mouse and Bresenham circle routines.	


January	16,2002


	Nothing. It's just my B-day!!!!!(27)


January 23,2002


	Made my BMP loader


February 2,2002


	Added RelSpriteGamma,RelPcopyGamma,RelGammaBlock


February 26, 2002


            Added my palette routines.  Vector palette routines.


March 11,2002


            After about 10 crashes, optimized my diagonal line routine, diagonal transparent routine and fixed the RelDelay bug.


March 23


	Added RelInside(Bounding Box) and RelInsideC(Circular Range Check)


	Fixed the STUPID RelPset bug.


March 27


	Added my Sprite Rotation routines after much optimizations.....


April 06,2002


	Added RelGetHi,RelGetLow,RelAddHi,RelAddLow for support for Byte-Sized variables to save memory :*)	


May 29,2002


	Added RelSpriteOnSprite and RelSpriteOnSprite and Rescaled my Rotation Tables from 128 to 256 so RelSpriteRotate


	produces "cleaner" sprites.


May 31,2002


	Added RelCollideSpr for a pixel perfect collision detection(extremely fast!!!!!!)


June 11,2002


	Added RelPsetOnSprite,RelPsetOnSpriteT,RelPointOnSprite





